Musculoskeletal Biomechanics and Rehabilitation

Musculoskeletal biomechanics aims to understand the effects of age, activity, disease and various pain states, including acute, chronic and recurrent conditions. A broad range of methods and experimental conditions are used to study movement strategies and function. Our translational work advances the development and assessment of intervention strategies for musculoskeletal rehabilitation and performance enhancement.

Subtopic Areas

  • Sports and Injury Biomechanics

    Identify deficits in movement mechanics underlying optimal and altered task performance using a spectrum of biomechanical, wearable-technology and informatics measures.

  • Motor Control and Biomechanics of the Limbs and Trunk

    Test hypotheses related to the kinematics, kinetics and motor control strategies associated with both normal and pathological human movement to understand mechanisms of disease and sports injury.

  • Muscle Mechanics and Physiology

    Use biomechanical methodologies to understand muscle function, neuromotor control and muscle adaptations on joints, disease states and whole-body performance.

  • Intervention Strategies for Musculoskeletal Rehabilitation

    Characterize the biomechanical basis of exercises and how they impact movement deficits associated with musculoskeletal disorders or altered performance in sports and aging.

  • Exercise and Aging Biomechanics

    Examine the feasibility, efficacy and mechanisms associated with activity-based interventions in aging.

Examples of Outcomes of Research in This Area

  • Understand movement deficits of the upper and lower extremities and spine to understand adaptations to pain, injury and training.
  • Understand muscle function and the relationship to musculoskeletal health and disease states.
  • Improve function and performance in daily activities, sports and work.
  • Identify factors related to injury risk in work and sports.
  • Characterize injury mechanisms related to musculoskeletal disorders.
  • Develop optimal rehabilitation and performance interventions and programs.
  • Develop intervention strategies based on root causes of musculoskeletal disorders.
  • Assess the efficacy of interventions to enable the translation to clinical practice.
  • Quantify the physical and cognitive and biopsychosocial factors related to performance and movement deficits.
  • Characterize the adaptive effects of exercise and activity on tendon, muscle, joint and whole-body movement to understand the impact on physical performance and quality of life.

Interdisciplinary collaboration partners

BKN faculty indicated with (*)

Other collaborators

Faculty members conducting research in this area

Associated labs and facilities

Facilities and Resources